Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 2265-2284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476273

RESUMO

Introduction: Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods: Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results: CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1ß and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-ß. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion: CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.


Assuntos
Quitosana , Glaucoma , Traumatismo por Reperfusão , Ratos , Animais , Camundongos , Humanos , Microglia/patologia , Quitosana/farmacologia , Sirolimo/farmacologia , Carbono/farmacologia , Lipopolissacarídeos/farmacologia , Glaucoma/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Autofagia , Citocinas/metabolismo , Água , Traumatismo por Reperfusão/tratamento farmacológico
2.
Cell Death Dis ; 12(6): 613, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127652

RESUMO

Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas de Ciclo Celular/genética , Glaucoma de Baixa Tensão/terapia , Proteínas de Membrana Transportadoras/genética , Degeneração Retiniana/prevenção & controle , Envelhecimento/patologia , Envelhecimento/fisiologia , Substituição de Aminoácidos/genética , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Glaucoma de Baixa Tensão/genética , Glaucoma de Baixa Tensão/metabolismo , Glaucoma de Baixa Tensão/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
3.
Hum Mol Genet ; 30(11): 1030-1044, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33856034

RESUMO

Progressive degeneration of retinal ganglion cells (RGCs) is a major characteristic of glaucoma, whose underlying mechanisms are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal tension glaucoma (NTG), directly affecting RGCs without high intraocular pressure and causing severe glaucomatous symptoms in clinical settings. A systematic analysis of the NTG mouse model is crucial for better understanding of the underlying pathological mechanisms for glaucoma. To elucidate proteomic and biochemical pathway alterations during NTG development, we established an OPTN E50K mutant mouse model through CRISPR/Cas9. Retinal proteins from resulting mice exhibiting glaucomatous phenotypes were subject to tandem mass tag-labeled quantitative proteomics and then analyzed through bioinformatics methods to characterize the molecular and functional signatures of NTG. We identified 6364 quantitative proteins in our proteomic analysis. Bioinformatics analysis revealed that OPTN E50K mice experienced protein synthesis dysregulation, age-dependent energy defects and autophagy-lysosome pathway dysfunction. Certain biological features, including amyloid deposition, RNA splicing, microglia activation and reduction of crystallin production, were similar to Alzheimer's disease. Our study is the first to describe proteomic and biochemical pathway alterations in NTG pathogenesis during disease advancement. Several proteomic signatures overlapped with retinal changes found in the ad mice model, suggesting the presence of common mechanisms between age-related degenerative disorders, as well as prospective new targets for diagnostic and therapeutic strategies.


Assuntos
Proteínas de Ciclo Celular/genética , Glaucoma de Baixa Tensão/genética , Proteínas de Membrana Transportadoras/genética , Retina/metabolismo , Animais , Autofagia/genética , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Humanos , Glaucoma de Baixa Tensão/metabolismo , Glaucoma de Baixa Tensão/patologia , Camundongos , Mutação/genética , Fenótipo , Proteômica , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fator de Transcrição TFIIIA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...